Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 118(4): 465-74, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25477351

RESUMO

Unilateral vocal-fold paralysis (UVP) occurs when one of the vocal folds becomes paralyzed due to damage to the recurrent laryngeal nerve (RLN). Individuals with UVP experience problems with speaking, swallowing, and breathing. Nearly two-thirds of all cases of UVP is associated with impaired function of the left RLN, which branches from the vagus nerve within the thoracic cavity and loops around the aorta before ascending to the larynx within the neck. We hypothesize that this path predisposes the left RLN to a supraphysiological, biomechanical environment, contributing to onset of UVP. Specifically, this research focuses on the identification of the contribution of the aorta to onset of left-sided UVP. Important to this goal is determining the relative influence of the material properties of the RLN and the aorta in controlling the biomechanical environment of the RLN. Finite element analysis was used to estimate the stress and strain imposed on the left RLN as a function of the material properties and loading conditions. The peak stress and strain in the RLN were quantified as a function of RLN and aortic material properties and aortic blood pressure using Spearman rank correlation coefficients. The material properties of the aortic arch showed the strongest correlation with peak stress [ρ = -0.63, 95% confidence interval (CI), -1.00 to -0.25] and strain (ρ = -0.62, 95% CI, -0.99 to -0.24) in the RLN. Our results suggest an important role for the aorta in controlling the biomechanical environment of the RLN and potentially in the onset of left-sided UVP that is idiopathic.


Assuntos
Aorta Torácica/fisiopatologia , Paralisia das Pregas Vocais/fisiopatologia , Pressão Arterial/fisiologia , Humanos , Laringe/fisiopatologia , Masculino , Pessoa de Meia-Idade , Pescoço/fisiopatologia , Nervo Laríngeo Recorrente/fisiopatologia , Nervo Vago/fisiopatologia
2.
J Biomech Eng ; 136(8)2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24829083

RESUMO

Idiopathic onset of unilateral vocal fold paralysis (UVP) is caused by damage to the recurrent laryngeal nerve (RLN) and results in difficulty speaking, breathing, and swallowing. This damage may occur in this nerve as it loops around the aortic arch, which is in a dynamic biomechanical environment. The goal of this study is to determine if the location-dependent biomechanical and microstructural properties of the RLN are different in piglets versus adolescent pigs. The neck/distal and thoracic/proximal (near the aortic arch) regions of the RLN from eight adolescent pigs and six piglets were isolated and mechanically assessed in uni-axial tension. Two-photon imaging (second harmonic) data were collected at 5%, 10%, and 15% strain during the mechanical test. The tangential modulus (TM) and the strain energy density (W) were determined at each level of strain. The mean mode of the preferred fiber angle and the full width at half maximum (FWHM, a measure of fiber splay) were calculated from the imaging data. We found significantly larger values of TM, W, and FWHM in the proximal segments of the left RLN when compared to the distal segments (18.51 MPa ± 1.22 versus 10.78 MPa ± 1.22, p < 0.001 for TM, 0.046 MPa ± 0.01 versus 0.026 MPa ± 0.01, p < 0.003 for W, 15.52 deg ± 1.00 versus 12.98 deg ± 1.00, p < 0.001 for FWHM). TM and W were larger in the left segments than the right (15.32 MPa ± 1.20 versus 11.80 MPa ± 1.20, p < 0.002 for TM, 0.038 MPa ± 0.01 versus 0.028 MPa ± 0.01, p < 0.0001 for W). W was larger in piglets when compared to adolescent pigs (0.042 MPa ± 0.01 versus 0.025 MPa ± 0.01, p < 0.04). The proximal region of the left porcine RLN is more stiff than the distal region and has a higher degree of fiber splay. The left RLN of the adolescent pigs also displayed a higher degree of strain stiffening than the right. These differences may develop as a result of the more dynamic environment the left RLN is in as it loops around the aortic arch.


Assuntos
Envelhecimento , Fenômenos Mecânicos , Pescoço/inervação , Nervo Laríngeo Recorrente/fisiologia , Tórax/inervação , Animais , Fenômenos Biomecânicos , Nervo Laríngeo Recorrente/fisiopatologia , Estresse Mecânico , Suínos , Paralisia das Pregas Vocais/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...